

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

1

TMS Async

DEVELOPERS GUIDE

Feb 2025
Copyright © 1998 - 2025 by tmssoftware.com bvba

Web: https://www.tmssoftware.com
Email: info@tmssoftware.com

https://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

2

Index

Availability ... 3

Online references .. 3

Introduction ... 4

Components .. 5

Getting Started .. 6

TVaComm properties, methods & events ... 6

Methods .. 13

TVaBuffer ... 15

TVaCapture .. 17

TVaModem .. 19

TVaXModem .. 22

TVaYModem .. 24

TVaZModem .. 26

TVaWaitMessage ... 28

TVaServer & TVaServerClient .. 30

TVaTerminal .. 31

TVaConfigDialog .. 33

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

3

Availability

TMS Async is available as VCL component for Delphi and C++Builder.

TMS Async is available for Delphi 7 till the newest Delphi & C++Builder releases.
TMS Async has been designed for and tested with: Windows XP, Vista, Windows 7, Windows 8,
Windows 10, Windows 11

Online references

TMS software website:
https://www.tmssoftware.com

TMS Async page:
https://www.tmssoftware.com/site/async32.asp

https://www.tmssoftware.com/
https://www.tmssoftware.com/site/async32.asp

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

4

Introduction

TMS Async comprises a set of components for Delphi & C++Builder to implement serial data
communications. The core component provides a light-weight, high-performance threaded buffered
serial data communication mechanism for Windows serial ports (COM ports). TMS Async uses the
Windows serial port communications API. For devices handling serial communications over USB,
typically, a virtual COM port driver is provided with the hardware that TMS Async can use.
On top of the core serial communication layer, additional components are provided to deal with X-
modem, Y-modem & Z-modem protocols, to emulate an ANSI or TTY terminal, to do data pattern
matching to facilitate protocols on serial ports.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

5

Components

TVaComm: core serial communication handling component
TVaBuffer: data buffer component
TVaCapture: pattern monitoring component
TVaWaitMessage: data monitoring component
TVaModem: component handling standard modem AT commands
TVaXModem: X-modem protocol handling component
TVaYModem: Y-modem protocol handling component
TVaZModem: Z-modem protocol handling component
TVaServer: Serial port based server component
TVaServerClient: Client component for TMS Async serial port server
TVaLEDDisplay: component showing visually the state of COM port signals
TVaTerminal: terminal component
TVaTTYEmulation: TTY emulation handling component for TVaTerminal
TVaANSIEmulation: ANSI emulation handling component for TVaTerminal
TVaConfigDialog: Dialog component to allow easy configuration of TVaComm.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

6

Getting Started

Drop a TVaComm component on the form and select the COM port to use via VaComm.PortNum.
Select the correct serial port parameters for the port that will be used, i.e. baudrate, databits,
stopbits, parity. Call VaComm.Open to get access to the selected COM port. Note that in Windows,
only one instance may open a serial port. If the port was already opened by another application,
Open will fail and an error VaComm.OnError will be triggered. When the port was successfully
opened, data communication may start using the write methods VaComm.WriteBuf(),
VaComm.WriteText(), VaComm.WriteChar() or read methods VaComm.ReadBuf(),
VaComm.ReadText(), VaComm.ReadChar(). Note that serial port communication is always byte-
based. As such, text and char receipt or transmission is handled via ANSI (8bit) strings.

TVaComm properties, methods & events

Properties

Active Active returns the current state of the COM port. If the port is succesfully
opened Active returns True. If the state of the port is closed Active returns
false.

AutoOpen Set AutoOpen = true to open the selected COM port automatically after
TVaComm is loaded from a stream, like the DFM stream for example.

Baudrate Specifies the baud rate at which the communications device operates.
Setting BaudRate to brUser will allow you to define a custom baudrate via
property UserBaudRate.

The predefined baud rates are:
br110, br300, br600, br1200, br2400, br4800, br9600, br14400, br19200,
br38400, br56000, br57600, br115200, br128000, br256000

Buffers Access to internal read and write buffers of TVaComm.

Buffers exposes following properties:

type TVaIntW = 0..MaxInt;

property ReadSize: TVaIntW;

Sets and returns the size of the receive buffer in bytes. ReadSize refers to
the total size of the receive buffer. The larger you make the receive buffer,
the less memory you have available to your application. However, if your
buffer is too small, it runs the risk of overflowing unless handshaking is used.
As a general rule, start with a buffer size of 1024 bytes. If an overflow error
occurs, increase the buffer size to handle your application's transmission
rate.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

7

property WriteSize: TVaIntW;

Sets and returns the size, in bytes, of the transmit buffer. WriteSize refers to
the total size of the transmit buffer. The larger you make the transmit
buffer, the less memory you have available to your application. However, if
your buffer is too small, you run the risk of overflowing unless you use
handshaking. As a general rule, start with a buffer size of 512 bytes. If an
overflow error occurs, increase the buffer size to handle your application's
transmission rate.

property ReadTimeout: TVaIntW;

Specifies the time-out interval, in milliseconds for reading data from the
serial buffer. The function returns if the interval elapses, even if the read
data request is not completed. If ReadTimeout is zero, the function tests the
read state and returns immediately.

property WriteTimeout: TVaIntW;

Specifies the time-out interval, in milliseconds for writing data to the serial
buffer. The function returns if the interval elapses, even if the write data
request is not completed. If WriteTimeout is zero, the function tests it's
write state and returns immediately.

CTS Boolean property that determines whether you can send data by querying
the state of the Clear To Send (CTS) line. Typically, the Clear To Send signal
is sent from a modem to the attached computer to indicate that transmission
can proceed. This property is not available at design time and is read-only at
run time. The Clear To Send line is used in RTS/CTS (Request To Send/Clear
To Send) hardware handshaking. The CTSHold property gives you a way to
manually poll the Clear To Send line if you need to determine its state. For
more information on handshaking protocols, see the FlowControl property.

CTSHold Boolean property that sets whether transmission is waiting for the CTS
(clear-to-send) signal to be sent. If this property is TRUE, transmission is
waiting.

Databits Specifies the number of bits in the bytes transmitted and received. The
possible settings are:
db4, db5, db6, db7, db8

DeviceName DeviceName describes the communications port name. If a %d parameter is
included the port number defined by PortNum is added to the DeviceName
when the device is opened.

Example:
PortNum = 2 DeviceName = COM%d -> COM2

DirectWrite If DirectWrite is set to True all data written to the serial port is send directly
out of the serial port. If DirectWrite is false a separate internal writer thread
is used. Increase of performance is achieved with character based
transmissions when DirectWrite is false.

A write thread will queue all data sent to the serial port. To enable this
feature you need to set the DirectWrite property to false. Make sure you
define the write buffer size large enough to store the biggest data block your
application uses.

DSR Determines the state of the Data Set Ready (DSR) line. Typically, the Data
Set Ready signal is sent by a modem to its attached computer to indicate

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

8

that it is ready to operate. This property is not available at design time and
is read-only at run time. This property is useful when writing a Data Set
Ready/Data Terminal Ready handshaking routine for a Data Terminal
Equipment (DTE) machine.

DSRHold Specifies whether transmission is waiting for the DSR (data-set-ready) signal
to be sent. If this property is TRUE, transmission is waiting.

DTRControl Determines whether to enable the Data Terminal Ready (DTR) line during
communications. Typically, the Data Terminal Ready signal is sent by a
computer to its modem to indicate that the computer is ready to accept
incoming transmission. When DTREnable is set to True, the Data Terminal
Ready line is set to high (on) when the port is opened, and low (off) when
the port is closed. When DTREnable is disabled, the Data Terminal Ready
always remains low. In most cases, setting the Data Terminal Ready line to
low hangs up the telephone.

Note: This flag is ignored if FlowControl is set to fcDtrDsr.

dtrDisable
Disables the DTR line when the device is opened and leaves it disabled.

dtrEnable
Enables the DTR line when the device is opened and leaves it on.

dtrHandshake
Enables DTR handshaking. If handshaking is enabled, it is an error for the
application to adjust the line by using SetDTRState.

EventChars This class property exposes XOnChar, XOffChar, ErrorChar, EventChar and
EOFChar.

XOnChar
Specifies the value of the XON character for both transmission and
reception.

XOffChar
Specifies the value of the XOFF character for both transmission and
reception.

ErrorChar
Specifies the value of the character used to replace bytes received with a
parity error.

EventChar
Specifies the value of the character used to signal an event.

EOFChar
Specifies the value of the character used to signal the end of data.

EventPriority Determines the internal reader thread's scheduling priority relative to other
threads in the process.

Possible settings:
tpIdle, tpLowest, tpLower, tpNormal, tpHigher, tpHighest, tpTimeCritical

Boosting the thread priority of a CPU intensive operation may "starve" the
other threads in the application. Only apply priority boosts to threads that
spend most of their time waiting for external events.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

9

FlowControl FlowControl refers to the internal communications protocol by which data is
transferred from the hardware port to the receive buffer. When a character
of data arrives at the serial port, the communications device has to move it
into the receive buffer so that your program can read it. If there is no
receive buffer and your program is expected to read every character directly
from the hardware, you will probably lose data because the characters can
arrive very quickly. A handshaking protocol insures data is not lost due to a
buffer overrun, where data arrives at the port too quickly for the
communications device to move the data into the receive buffer.

OutCtsFlow: Boolean;
Specifies whether the CTS (clear-to-send) signal is monitored for output flow
control. If this member is TRUE and CTS is turned off, output is suspended
until CTS is sent again.

OutDsrFlow: Boolean;
Specifies whether the DSR (data-set-ready) signal is monitored for output
flow control. If this member is TRUE and DSR is turned off, output is
suspended until DSR is sent again.

ControlDtr: TVaControlDtr;
dtrDisabled:
Disables the DTR line when the device is opened and leaves it disabled.
dtrEnabled:
Enables the DTR line when the device is opened and leaves it on.
dtrHandshake:
Enables DTR handshaking. If handshaking is enabled, it is an error for the
application to adjust the line by using the SetDTR function.

ControlRts: TVaControlRts;
rtsDisabled:
Disables the RTS line when the device is opened and leaves it disabled.
rtsEnabled:
Enables the RTS line when the device is opened and leaves it on.
rtsHandshake:
Enables RTS handshaking. The driver raises the RTS line when the "type-
ahead" (input) buffer is less than one-half full and lowers the RTS line when
the buffer is more than three-quarters full. If handshaking is enabled, it is an
error for the application to adjust the line by using the SetRTS function.
rtsToggle:
Specifies that the RTS line will be high if bytes are available for
transmission. After all buffered bytes have been sent, the RTS line will be
low.

XOnXOffOut: Boolean;
Specifies whether XON/XOFF flow control is used during transmission. If this
member is TRUE, transmission stops when the XOffChar character is received
and starts again when the XOnChar character is received.

XOnXOffIn: Boolean;
Specifies whether XON/XOFF flow control is used during reception. If this
member is TRUE, the XOffChar character is sent when the input buffer
comes within XOffLim bytes of being full, and the XOnChar character is sent
when the input buffer comes within XOnLim bytes of being empty.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

10

DsrSensitivity: Boolean;
Specifies whether the communications driver is sensitive to the state of the
DSR signal. If this member is TRUE, the driver ignores any bytes received,
unless the DSR modem input line is high.

TxContinueOnXoff: Boolean;
Specifies whether transmission stops when the input buffer is full and the
driver has transmitted the XOffChar character. If this member is TRUE,
transmission continues after the input buffer has come within XOffLim bytes
of being full and the driver has transmitted the XOffChar character to stop
receiving bytes. If this member is FALSE, transmission does not continue until
the input buffer is within XOnLim bytes of being empty and the driver has
transmitted the XOnChar character to resume reception.

Overview of basic settings in various flowcontrol scenarios:

fcNone, no flowcontrol
OutCtsFlow: false;
OutDsrFlow: false;
ControlDtr: dtrDisabled;
ControlRts: rtsDisabled;
XOnXOffOut: false;
XOnXOffIn: false;

fcRtsCts or hardware flowcontrol
OutCtsFlow: True;
OutDsrFlow: false;
ControlDtr: dtrDisabled;
ControlRts: rtsHandshake;
XOnXOffOut: false;
XOnXOffIn: false;

fcDtrDsr
OutCtsFlow: false;
OutDsrFlow: True;
ControlDtr: dtrHandshake;
ControlRts: rtsDisabled;
XonXoffOut: false;
XonXoffIn: false;

fcXOnXOff or software flowcontrol
OutCtsFlow: false;
OutDsrFlow: false;
ControlDtr: dtrDisabled;
ControlRts: rtsDisabled;
XonXoffOut: True;
XonXoffIn: True;

Handle Public property returning a handle that identifies the communications
device. This property is read-only. Use this value when calling any
communications routines in the Windows API.

MonitorEvents MonitorEvents determines which events are handled during serial
communications.
MonitorEvents is a set of event sources from: ceBreak, ceCts, ceDsr, ceError,
ceRing, ceRlsd, ceRxChar, ceTxEmpty, ceRxFlag, ceRx80Full, ceEvent1,
ceEvent2, cePErr

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

11

ceBREAK
A break was detected on input.

ceCTS
The CTS (clear-to-send) signal changed state.

ceDSR
The DSR (data-set-ready) signal changed state.

ceERROR
A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN,
and CE_RXPARITY.

ceRING
A ring indicator was detected.

ceRLSD
The RLSD (receive-line-signal-detect) signal changed state.

ceRXCHAR
A character was received and placed in the input buffer.

ceRXFLAG
The event character was received and placed in the input buffer. The event
character is specified in EventChars structure, which is applied to a serial
port

ceTXEMPTY
The last character in the output buffer was sent.

ceRX80FULL
Receiver buffer is 80% full

ceEVENT1
Provider specific event 1. This event may vary between different types of
hardware.

ceEVENT2
Provider specific event 2. This event may vary between different types of
hardware.

cePERR
A serial printer error occured.

Options coErrorChar
Specifies whether bytes received with parity errors are replaced with the
character specified by the ErrorChar property. If this property is TRUE and
the fParity property is TRUE, replacement occurs.

coNullStrip
Specifies whether null bytes are discarded. If this property is TRUE, null
bytes are discarded when received.

coParityCheck
Specify whether parity check on incoming data is performed

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

12

Parity Specifies the parity scheme to be used. The parity scheme can be any of
these values:
paNone, paOdd, paEven, paMark, paSpace

PortNum Sets and returns the communications port number. You can set value to any
number between 1 and 16 at design time (the default is 0, no port).
However, the TVaComm control generates an error (Device unavailable) if
the port does not exist when you attempt to open it with the "Open" method.

ReadBufFree Public property returning the number of free characters in the receive
buffer. ReadBufFree refers to the number of characters that can be received
by the TVaComm without overflowing the input buffer.

ReadBufUsed Public property returning the number of characters waiting in the receive
buffer. This property is not available at design time. ReadBufUsed refers to
the number of characters that have been received by the TVaComm and are
waiting in the receive buffer for you to take them out.

StopBits Specifies the number of stop bits to be used. The stopbits can be any of
these values:
sb1, sb15, sb2

UpdateDCB When setting UpdateDCB to false TVaComm will use the default setup of the
serial port defined by your Windows environment. Otherwise TVaComm will
update the settings of the serial port (active Windows session only).

UserBaudrate UserBaudrate can be used to define a custom baudrate speed. This must be
done in two steps. First set the Baudrate property to brUser. Secondly, enter
a valid baudrate > 0.

Version Read-only property returning the version of the component

WriteBufFree Public property returning the number of free characters in the write buffer.
WriteBufFree refers to the number of characters that can be sent to
TVaComm without overflowing the output buffer.

WriteBufUsed Public property returning the number of characters waiting in the output
buffer. WriteBufUsed refers to the number of characters that are waiting for
transmission.

WritePriority Determines the internal write thread's scheduling priority relative to other
threads in the process.

Possible settings:
tpIdle, tpLowest, tpLower, tpNormal, tpHigher, tpHighest, tpTimeCritical

Boosting the thread priority of a CPU intensive operation may "starve" the
other threads in the application. Only apply priority boosts to threads that
spend most of their time waiting for external events.

Events

OnBreak Event triggered when a break was detected on input.

OnClose Event triggered when the serial port specified by PortNum was closed
succesfully.

OnCts Event triggered when the CTS (clear-to-send) signal changed state.

OnDsr Event triggered when the DSR (data-set-ready) signal changed state.

OnError Event triggered when a line-status error occurred. Line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

OnEvent1 Event triggered when provider specific event 1 occurred. This event may
vary for different types of hardware.

OnEvent2 Event triggered when provider specific event 2 occurred. This event may
vary for different types of hardware.

OnOpen Event triggered when the serial port specified by PortNum was opened
succesfully.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

13

OnPErrr Event triggered when a serial printer error occured.

OnRing Event triggered when a ring indicator was detected.

OnRlsd Event triggered when the RLSD (receive-line-signal-detect) signal changed
state.

OnRx80Full Event triggered when the receiver buffer is 80% full.

OnRxBuf Event triggered when for a buffer sent with VaComm.WriteBuf(), this buffer
was received by the receiver.

OnRxChar Event triggered when a character was received and placed in the input
buffer.

OnRxFlag Event triggered when an event character was received and placed in the
input buffer. The event character is specified in the EventChars structure,
which is applied to a serial port.

OnTxEmpty Event triggered when the last character in the output buffer was sent.

OnUSBDevicePlugin Event triggered when an USB COM port device is plugged in, returning the
device name

OnUSBDeviceUnplug Event triggered when an USB COM port device is plugged out, returning the
device name

Methods

Close Sets and returns the state of the communications port as closed. Not
available at design time. Calling "close" closes the port and clears the
receive and transmit buffers. TVaComm automatically closes the serial port
when your application is terminated. If either the DTREnable or the
RTSEnable properties is set to True before the port is opened, the DTR and
RTS signals are lowered when the port is closed. Otherwise, the DTR and RTS
lines remain in their previous state.

PurgeRead PurgeRead terminates all outstanding read operations and returns
immediately, even if the read operations have not been completed and
clears the input buffer (if the device driver has one).

PurgeReadWrite PurgeReadWrite is a combination of PurgeRead and PurgeWrite. It clears all
input and output buffers and terminates all pending transmissions.

PurgeWrite PurgeWrite terminates all outstanding write operations and returns
immediately, even if the write operations have not been completed and
clears the output buffer (if the device driver has one).

ReadBuf function ReadBuf(var Buf; Count: Integer): Integer;
Buf is any variable, Count is an expression of type Integer. Read reads Count
or fewer bytes from the com port. The actual number of bytes read (less
than or equal to Count) is returned in its Result. If a read operations fails it
returns 0. Never try to read bytes manually by specifying the count
parameter yourself. Use the Count parameter returned in "OnData Event".

ReadChar function ReadChar(var Ch: AnsiChar): Boolean;
ReadChar returns a single character. If there are no characters waiting in the
receiver buffer ReadChar returns false.

ReadText function ReadText: string;
ReadText returns all received characters as a string. If there are no
characters waiting in the receiver buffer an empty string is returned.

ResetDev ResetDev will reset the serial device/hardware if possible. This is handled by
Windows itself and TVaComm only supplies the routine.

SetBreak procedure SetBreak(Value: Boolean);
Sets or clears the break signal state. When set to True, the SetBreak method
sends a break signal. The break signal suspends character transmission and
places the transmission line in a break state until you call SetBreak with

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

14

False.

SetDTR procedure SetDTR(Value: Boolean);
Calling SetDTR with false clears the DTR (data-terminal-ready) signal.
Otherwise sends the DTR (data-terminal-ready) signal. In most cases, setting
the Data Terminal Ready line to low (false) hangs up the telephone.

SetRTS procedure SetRTS(Value: Boolean);
Calling SetRTS with false clears the RTS (request-to-send) signal. Otherwise
SetRTS sends the RTS (request-to-send) signal.

SetXOn procedure SetXon(Value: Boolean);
Calling SetXOn with false causes transmission to act as if an XOFF character
has been received. Calling with True causes transmission to act as if an XON
character has been received.

WriteBuf function WriteBuf(var Buf; Count: Integer): Integer;
Buf is any variable, Count is an expression of type Integer. Write writes
Count or fewer bytes to the com port from memory, starting at the first byte
occupied by Buf. The actual number of bytes written (less than or equal to
Count) is returned in its Result. If a write operation fails it returns 0.

If however DirectWrite is set to false an exception is raised if the data block
is too large to be written. (Increase the writebuffer size)

WriteChar function WriteChar(Ch: Char): Boolean;
WriteChar writes a single character to the serial port. If WriteChar succeeds
it return true, otherwise it will return false.

WriteText function WriteText(const s: string): Boolean;
WriteText writes a single string to the serial port. If WriteText succeeds it
return true, otherwise it will return false.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

15

TVaBuffer

TVaBuffer is derived from TVaCommComponent and must be hooked up with a TVaComm
component in order to operate. To start using TVaBuffer, drop a TVaComm and TVaBuffer instance
on the form and assign VaComm to VaBuffer.Comm.
TVaBuffer is an external circular data buffer (FIFO) used to store large amount of data received
through the COM port. Besides reading the buffer, it also allows previewing of data without
removing the characters from the buffer or you can write your own characters into the buffer which
is usefull writing macro based events.

Properties

Active When true, TVaBuffer listens to the data received or to be sent via

TVaComm and retrieves it.

Comm Sets the TVaComm instances the buffer uses to receive or send data

Full Full is True when there is no more free space available to store/receive
data.Trying to write data to the buffer will result in an Overflow event.

Size Size describes the maximum buffer size. Make sure to set Size large enough
in order to buffer all received bytes.

Events

OnChange OnChange will occur if characters arrive in the buffer or when bytes are read

from the buffer.

OnOverFlow OnOverflow will occure if there is not enough room in the buffer to store all
incoming bytes.

Methods

BufFree: integer Returns the number of free characters in the buffer. This property is not

available at design time. BufFree refers to the number of bytes that can be
received.

BufUsed: integer Returns the number of characters waiting in the buffer. This property is not
available at design time. BufUsed refers to the number of bytes that have
been received by the modem and are waiting in the buffer for you to take
them out.

Clear Removes all data available in the buffer.

Peek function Peek(var Buf; Count: Integer): Boolean;

Buf is any variable, Count is an expression of type Integer. Use Peek in order
to read bytes stored in the buffer without removing them.

Remove function Remove(Count: Integer): Boolean;

Remove count bytes from the buffer.

Read function Read(var Buf; Count: Integer): Boolean;

Buf is any variable, Count is an expression of type Integer. Read reads Count
bytes from the buffer.

Write function Write(const Buf; Count: Integer): Boolean;

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

16

Buf is any variable, Count is an expression of type Integer. Write writes
Count or fewer bytes to the buffer from memory, starting at the first byte
occupied by Buf.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

17

TVaCapture

TVaCapture is derived from TVaCommComponent and must be hooked up with a TVaComm
component in order to operate. To start using TVaCapture, drop a TVaComm and TVaCapture
instance on the form and assign VaComm to VaCapture.Comm. The TVaCapture component is used
to receive ASCII text messages. In comparison to TVaWaitMessage, TVaCapture can extract and store
parts of an incoming message (protocol messages). Therefore each message must contain a header
or prefix set of characters and so called terminator character(s). The prefix and terminator parts
are defined with the DataStart and the DataFinish properties.

TVaCapture also handles control characters embedded in the DataStart and the DataFinish string
properties. eg ^M = #13

TVaCapture can also have pattern matching specifiers for DataStart and DataFinish. This type of
pattern matching expression is used when the Data*Type property is set to dtExpression

When dtExpression is chosen following special characters can be used:

A: an alphabetic uppercase character is accepted at this position
a: an alphabetic lowercase character is accepted at this position
?: just any character is accepted at this position
0: a numeric character is accepted at this position
\x: only this literal character x is accepted at this position

Expression examples:

\X000: the accepted pattern is a character X followed by 3 numbers

\A\Taa: the accepted pattern is a character A followed by T followed by 2 lowercase characters

Properties

Active When true, TVaCapturer listens to the data received or to be sent via

TVaComm and retrieves it to find matching patterns

Comm Sets the TVaComm instances the buffer uses to receive or send data

DataStart Sets the prefix part of a protocol message with the DataStart property.

DataStartCase When DataStartType is dtExpression, this defines whether the expression
needs to be interpreted with case sensitivity or not

DataStartType When type is dtString, the DataStart must be identical with the incoming
datastream on the COM port for it to trigger a match.
When type is dtExpression, the DataStart is treated as an expression and a
match based on this expression is done.

DataFinish Sets the suffix part of a protocol message with the DataFinish property.

DataFinishCase Same purpose as DataStartCase but for the data end pattern

DataFinishType Same purpose as DataStartType but for the data end pattern

MaxMsgLength The data between DataStart and DataFinish is stored. In order to prevent an
overflow of the message buffer MaxMsgLen is used.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

18

Events

OnMessage TVaCapture can extract and store parts of an incoming message (protocol

messages). Therefore each message must contain a header or prefix set of
characters and so called terminator byte(s). The data between DataStart and
DataFinish is stored. As soon as DataFinish is received the OnMessage event
handler is called with the received message as a parameter.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

19

TVaModem

TVaModem provides device-independent routines for accessing modems. It provides methods for
initializing, configuring, dialing, answering, and other common modem functions.

Properties

Active When true, TVaModem listens to the data received or to be sent via

TVaComm and retrieves it.

AnswerTimeOut AnswerTimeout describes the time in milliseconds for answering incoming
calls.

CharDelay CharDelay sets the time in milliseconds while sending characters to the
attached modem. TVaModem will add a short pause between each character.

CommandTimeOut CommandTimeout sets the time in milliseconds TVaModem waits for a
response from the attached modem after sending modem commands like Init
and Reset.

Config Contains a name/value pair list of AT modem command strings for typical
actions:

Commands:
RESETCMD=Resets the modem
DIALCMD=Prefix for dialing a phone number
DIALTERM=Terminator character for the dial string parameter
HANGUPCMD=Command to hangup the modem
INITCMD=Configures the modem
ANSWERCMD=Used to answer an incoming call

Responses:
ROK=
RCONNECT=
RBUSY=
RVOICE=
RNOCARRIER=
RNODIALTONE=
RERROR=
RRING=

Default configuration is:

RESETCMD=ATZ^M
DIALCMD=ATDT
DIALTERM=^M
HANGUPCMD=+++~~~ATH0^M
INITCMD=ATZE1M1^M
ANSWERCMD=ATA^M
ROK=OK
RCONNECT=CONNECT
RBUSY=BUSY
RVOICE=VOICE
RNOCARRIER=NO CARRIER
RNODIALTONE=NO DIALTONE
RERROR=ERROR
RRING=RING
RTERM=^M

DialTimeOut DialTimeout describes the time in milliseconds for dialing operations.

DtrDropDelay Timeinterval used while performing a DTR modem hangup.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

20

RingDetect Returns the ring waiting status of the modem.
Return values can be: rdLine, rdMsg, rdNone

rdLine
TVaModem waits for a hardware ring signal returned by the comport
component.

rdMsg
TVaModem will wait for the modem to return a modem ring response.

rdNone
TVaModem will not respond to any ring events.

RingWaitTimeOut RingWaitTimeout describes the time in milliseconds between two ring events
or messages. After a RingTimeout answering an incoming call is aborted and
the ring count is set to zero.

Events

OnAnswerTimeOut OnAnswerTimeout is called as soon the time expires indicated by

AnswerTimeout while answering an incoming phone call.

OnBusy OnBusy is called as soon as TVaModem receives the busy message response
from the attached modem.

OnCommandTimeOut OnCommandTimeout is called as soon the time expires indicated by
CommandTimeout while sending command strings to the attached modem.

OnConnect OnConnect is called as soon as TVaModem receives the Connect Message
repsonse from the attached modem. In most cases the Connect keyword is
followed by connection parameters like baudrate and protocol. The received
connect string message is stored in the ConnectString property which is also
passed through with the connectstring parameter.

OnDialTimeOut OnDialTimeout is called as soon the time expires indicated by DialTimeout
while dialing a phone number until connect.

OnError OnError is called as soon as TVaModem receives the error Message response
from the attached modem.

OnNoCarrier OnNoCarrier is called as soon as TVaModem receives the NoCarrier Message
response from the attached modem.

OnNoDialTone OnNoDialTone is called as soon as TVaModem receives the NoDialTone
Message response from the attached modem.

OnOK OnOK is called as soon as TVaModem receives the OK message repsonse from
the attached modem.

OnRingDetect The OnRingDetect event is called as soon as a ring event is received from the
attached modem. The Rings parameter shows the number of rings received.
With the AcceptCall parameter you can answer the incoming call. If
AcceptCall is true TVaModem will answer then incoming call by sending the
Answer string.

OnRingWaitTimeOut OnRingWaitTimeout is called as soon the time expires indicated by
RingWaitTimeout while waiting for an additional ring event.

OnVoice OnVoice is called as soon as TVaModem receives the Voice Message repsonse
from the attached modem.

Methods

Answer Answer causes the modem to answer an incoming call.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

21

This routine sends the string specified by the AnswerCmd property to the
modem. It then sets up the modem dispatcher to wait until a connection has
been received or a certain number of seconds (determined by the
AnswerTimeout property) has elapsed.
An answer operation can be cancelled at any time by calling Cancel.

Cancel Cancel will abort all pending modem operations like dialing or answering.

Dial Dial sends the string specified by the DialCmd property to the modem,
followed by the Number parameter. It then initializes the modem
component's triggers to wait for a connection or until "DialTimeout" seconds
have elapsed.
A dial operation can be cancelled at any time by calling Cancel.

Hangup Hangup breaks an existing modem connection.
Hangup sends the string specified by HangupCmd to the modem. This is a
command option only. If the DropDTR parameter is true the DTR method of
the TVaComm component is used instead in order to perform a hardware
hangup, also called dropping the DTR signal.

Init The Init method sends the string specified by the Config property to the
modem. Then it will begin waiting for an OK or ERROR response. Because of
this, Init does not return immediately. Instead it sends the INICMD command
to the modem, waiting for each modem response to be properly handled
before returning. Init sends all of the configuration strings even if one or
more returns an error.

PutCommand PutCommand sends any command string specified by Cmd to the modem. A
command string can contain normal characters or special characters. A
special character is prefixed with a '^', which indicates that the modem
should send the control character specified by the character after the '^'. For
instance, the command string

ATZ^M

would send the characters 'ATZ' followed by ^M, or ASCII 13.

Reset The Reset method sends the string specified by the Config property to the
modem. Then it will begin waiting for an OK or ERROR response.

WaitForResponse WaitForResponse is used for waiting for modem responses. The Delay
parameter is the time in milliseconds before a timeout event occurs. Use
WaitForResponse in combination with the PutCommand method.
WaitForResponse returns immediatly. Use Cancel in order to abort the
pending WaitForResponse operation.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

22

TVaXModem

XModem is a protocol for transferring files during direct dial-up communications. Developed by
Ward Christensen in 1977, XModem has basic error checking to ensure that information isn't lost or
corrupted during transfer; it sends data in 128-byte blocks. XModem has undergone a couple of
enhancements: XModem CRC uses a more reliable error-correction scheme, and XModem-1K
transfers data faster by sending it in 1,024-byte blocks.

To start using the XModem protocol, set VaXModem.Comm to the VaComm instance handling the
communication. The select the operation to perform, i.e. upload of download with the
VaXModem.Mode property, set the filename and call Execute.

Example:

Upload
 VaXModem1.FileName := ‘filetoupload’;
 VaXModem1.Mode := tmUpload;
 VaXModem1.Execute;

Download
 VaXModem1.FileName := ‘filetodownoad’;
 VaXModem1.Mode := tmDownload;
 VaXModem1.Execute;

Properties

BufferSize BufferSize is used to define the internal size of the protocol's receiver

buffer. Default is 4096.

ErrorCode ErrorCode is a read-only property describing the last type of error which has
occured.

ErrorCount ErrorCount is a read-only property describing the number of errors which
have occured.

ExitCode ExitCode is used to indicate the status of the file transfer. ExitCode is set as
soon as the transfer has ended. It can stop due to an error or because the
transfer was completed succesfully.

Possible errorcodes
 0:no error, transfer completed successfully.
 -1:a timeout occured
 -2:an error occured while writing to the comport (obsolete)
 -3:Local system cancelled the transfer
 -4:Remote system cancelled the transfer
 -5:Out of sync, unexpected data received
 -6:A checksum or CRC error occured (obsolete)
 -7:Error reading data from a file stream
 -8:Error writing data to a file stream
 -9:Maximum errors reached
-10:An invalid startup code was received
-11:Error creating a file for writing
-12:Error opening a file for reading
-14:A critical buffer overrun occured
-15:An invalid or unexpected packet received
-16:An invalid or unknown character received

FileName FileName is the name of the file to transfer to or from another computer.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

23

Before calling upload or download to start the transfer a valid filename must
be specified.

MaxErrors MaxErrors sets the number of errors which may occure during a file transfer.

Mode Use tmUpload for sending and tmDownload for receiving.

Protocol The protocol type can be any of following values: XModem, XModem1K,
XModemG

XModem
128k block with simple checksum
Each block is acknowledged with an ACK.
One file at a time transfers only

XModem1K
1024k block with 32bit CRC checking
Each block is acknowledged with an ACK.
One file at a time transfers only

XModem-G
1024k block with 32bit CRC checking
There is no acknowledge with an ACK.
One file at a time transfers only

Timeout Timeout is the time in milliseconds used to wait for a single incoming
character. If a timeout occures the OnError event handler is called.

Events

OnError OnError is called as soon an error occures during a file transfer. ErrorCode

contains the last error. See also ExitCode for the possible values.

OnFileInfo OnFileInfo is called as soon as a file is opened (upload) or created
(download).

OnPacketEvent OnPacketEvent is called during file transfers to indicate the progress made.
Packet is the current packet number and ByteCount describes the number of
bytes received.

OnTransferStart OnTransferStart is triggered as soon as one of the methods Upload or
Download are called.

OnTransferEnd OnTransferEnd is called when a file transfer is complete or a when critical
error occured.

Methods

Cancel Use cancel to abort a file transfer in progress.

Execute Depending on the Mode property Execute will send or receive a file to or
from a remote system.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

24

TVaYModem

YModem is a protocol for transferring files during direct dial-up communications. So named because
it builds upon the earlier XModem protocol, YModem sends data in 1,024-byte blocks and is
consequently faster than XModem. However, it doesn't work well on noisy phone lines, unlike its
successor, ZModem. YModem has undergone a few enhancements: YModem-Batch can send several
files in one session; YModem-G drops software error correction, which speeds up the process by
leaving hardware-based error correction in modems.

To start using the YModem protocol, set VaYModem.Comm to the VaComm instance handling the
communication. The select the operation to perform, i.e. upload of download with the
VaYModem.Mode property, set the filename and call Execute.

Example:

Upload
 VaYModem1.Files.Clear;
 VaYModem1.Files.Add(file1);
 VaYModem1.Mode := tmUpload;
 VaYModem1.Execute;

Download
 VaYModem1.TargetFolder := ‘folderwheretoreceive’;
 VaYModem1.Mode := tmDownload;
 VaYModem1.Execute;

Properties

BufferSize BufferSize is used to define the internal size of the protocol's receiver

buffer. Default is 4096.

ErrorCode ErrorCode is a read-only property describing the last type of error which has
occured.

ErrorCount ErrorCount is a read-only property describing the number of errors which
have occured.

ExitCode ExitCode is used to indicate the status of the file transfer. ExitCode is set as
soon as the transfer has ended. It can stop due to an error or because the
transfer was completed succesfully.

Possible errorcodes
 0:no error, transfer completed successfully.
 -1:a timeout occured
 -2:an error occured while writing to the comport (obsolete)
 -3:Local system cancelled the transfer
 -4:Remote system cancelled the transfer
 -5:Out of sync, unexpected data received
 -6:A checksum or CRC error occured (obsolete)
 -7:Error reading data from a file stream
 -8:Error writing data to a file stream
 -9:Maximum errors reached
-10:An invalid startup code was received
-11:Error creating a file for writing
-12:Error opening a file for reading
-14:A critical buffer overrun occured
-15:An invalid or unexpected packet received
-16:An invalid or unknown character received

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

25

Files Files is a list of FileNames. In compare to the XModem protocol YModem
supports batch transfers. This means you can sent multiple files in one call.
For downloading the received filenames are stored in the Files property. For
uploading all filenames must be added.

MaxErrors MaxErrors sets the number of errors which may occure during a file transfer.

Mode Use tmUpload for sending and tmDownload for receiving.

Protocol The protocol type can be any of following values: YModem, YModemG

YModem batch
1024k block with 32bit CRC checking
Each block is acknowleged with an ACK.
Supports multiple files

YModemG batch
1024k block with 32bit CRC checking
No block is acknowleged with an ACK.
Supports multiple files

TargetFolder Sets the folder where incoming files will be downloaded.

Timeout Timeout is the time in milliseconds used to wait for a single incoming
character. If a timeout occures the OnError event handler is called.

Events

OnError OnError is called as soon an error occures during a file transfer. ErrorCode

contains the last error. See also ExitCode for the possible values.

OnFileInfo OnFileInfo is called as soon as a file is opened (upload) or created
(download).

OnPacketEvent OnPacketEvent is called during file transfers to indicate the progress made.
Packet is the current packet number and ByteCount describes the number of
bytes received.

OnTransferStart OnTransferStart is triggered as soon as one of the methods Upload or
Download are called.

OnTransferEnd OnTransferEnd is called when a file transfer is complete or a when critical
error occured.

Methods

Cancel Use cancel to abort a file transfer in progress.

Execute Depending on the Mode property Execute will send or receive a file to or
from a remote system.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

26

TVaZModem

The ZModem file tranfer protocol provides reliable file tranfsers with complete data integrity
between application programs. ZModem's 32 bit CRC catches errors that continue to sneak into the
even most advance networks.

ZModem provides advanced file management features including AutoDownload (Download initiated
without user intervention) and crash recovery.

To start using the ZModem protocol, set VaZModem.Comm to the VaComm instance handling the
communication. The select the operation to perform, i.e. upload of download with the
VaZModem.Mode property, set the filename and call Execute.

Example:

Upload
 VaZModem1.Files.Clear;
 VaZModem1.Files.Add(file1);
 VaZModem1.Mode := tmUpload;
 VaZModem1.Execute;

Download
 VaZModem1.TargetFolder := ‘folderwheretoreceive’;
 VaZModem1.Mode := tmDownload;
 VaZModem1.Execute;

Properties

BufferSize BufferSize is used to define the internal size of the protocol's receiver

buffer. Default is 4096.

ErrorCode ErrorCode is a read-only property describing the last type of error which has
occured.

ErrorCount ErrorCount is a read-only property describing the number of errors which
have occured.

ExitCode ExitCode is used to indicate the status of the file transfer. ExitCode is set as
soon as the transfer has ended. It can stop due to an error or because the
transfer was completed succesfully.

Possible errorcodes
 0:no error, transfer completed successfully.
 -1:a timeout occured
 -2:an error occured while writing to the comport (obsolete)
 -3:Local system cancelled the transfer
 -4:Remote system cancelled the transfer
 -5:Out of sync, unexpected data received
 -6:A checksum or CRC error occured (obsolete)
 -7:Error reading data from a file stream
 -8:Error writing data to a file stream
 -9:Maximum errors reached
-10:An invalid startup code was received
-11:Error creating a file for writing
-12:Error opening a file for reading
-14:A critical buffer overrun occured
-15:An invalid or unexpected packet received
-16:An invalid or unknown character received

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

27

-17:File seek error
-19:Unknown Header received
-20:Remote resent header request
-21:Remote filesystem error occured
-22:Application terminated (force exit)
-23:Data packet to large (up to 1024 bytes)
-24:Remote terminated to early
-25:Error in receiving command sequence

Files Files is a list of FileNames. In compare to the XModem protocol YModem
supports batch transfers. This means you can sent multiple files in one call.
For downloading the received filenames are stored in the Files property. For
uploading all filenames must be added.

MaxErrors MaxErrors sets the number of errors which may occure during a file transfer.

Mode Use tmUpload for sending and tmDownload for receiving.

TargetFolder Sets the folder where incoming files will be downloaded.

Timeout Timeout is the time in milliseconds used to wait for a single incoming
character. If a timeout occures the OnError event handler is called.

Events

OnError OnError is called as soon an error occures during a file transfer. ErrorCode

contains the last error. See also ExitCode for the possible values.

OnFileInfo OnFileInfo is called as soon as a file is opened (upload) or created
(download).

OnPacketEvent OnPacketEvent is called during file transfers to indicate the progress made.
Packet is the current packet number and ByteCount describes the number of
bytes received.

OnTransferStart OnTransferStart is triggered as soon as one of the methods Upload or
Download are called.

OnTransferEnd OnTransferEnd is called when a file transfer is complete or a when critical
error occured.

Methods

Cancel Use cancel to abort a file transfer in progress.

Execute Depending on the Mode property Execute will send or receive a file to or
from a remote system.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

28

TVaWaitMessage

TVaWaitMessage is derived from TVaCommComponent and must be hooked up with a TVaComm
component in order to operate. The TVaWaitMessage component is used to receive simple ASCII text
messages. As soon as a predefined message is received the OnMessage event is triggered.
TVaWaitMessage also handles control characters embedded in the Strings property. eg ^M = #13

Properties

Active When true, TVaBuffer listens to the data received or to be sent via

TVaComm and retrieves it.

CaseSensitive CaseSensitive determines if a string must match it's uppercase and lowercase
characters. If CaseSensitive is False, TVaWaitmessage compares the strings
passed to it case-insensitively.

Comm Sets the TVaComm instances the buffer uses to receive or send data

Strings Strings is a list of ASCII messages to wait for.

Events

OnMessage The OnMessage event is called as soon as an ascii message defined in the

strings property is received. Index will indicate which message it concerns.

Methods

ResetStrings ResetStrings will clear all received data and puts the component in its initial

state.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

29

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

30

TVaServer & TVaServerClient

A TVaServer is used in combination with a TVaServerClient component. TVaServerClient is derived
from TVaCustomComm and therefore contains all properties, methods and events used by the
regular TVaComm component. Both TVaServer & TVaServerClient components are used to build a
comm server application which can support as many COM ports as required.

First define the server client and intialize all other properties. Finally you can hook it up with a
server component. This can be done in design-time as well during run-time. To hook up a client to a
server, set VaServerClient.Server := VaServer;

Due to the many different types of hardware there is no hardware specific functionallity inside the
server component except for the BroadCast method. This means that each client must be configured
and opened manually.

TVaServer Properties

ClientCount Public property to retrieve the number of connected clients

ServerClient[Index:
integer]

Array of connected clients TVaServerClient to the server

TVaServer Events

OnClientBreak Event triggered when client receives a break

OnClientCts Event triggered when client cts signal raises

OnClientDtr Event triggered when client dtr signal raises

OnClientError Event triggered when client receives an error

OnClientRing Event triggered when client ring signal raises

OnClientRlsd Event triggered when client rlsd signal raises

OnClientRxChar Event triggered when client receives a char

OnClientRxFlag Event triggered when client receive flag raises

OnClientTxEmpty Event triggered when client transmit empty flag raises

TVaServer Methods

Broadcast procedure Broadcast(var Buf; Count: Integer);

Broadcast will sent data defined by Buf to all active server clients.

CloseAll Closes all active server clients.

TVaServerClient Properties

TVaServerClient inherits all properties, methods and events from TVaCustomComm and adds one
extra property:

Server Server describes the TVaServer component which the component is linked to.

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

31

TVaTerminal

TVaTerminal is a visual control that can function as a terminal. When connected to a TVaComm
instance, it can act as a terminal control to interact with the COM port. Default, TVaTerminal
displays the incoming characters from the COM port and will send the characters typed to the COM
port. When an Emulation component is connected to TVaTerminal.Emulation, special character
sequences are interpreted, for example, character sequences to set colors or blinking that the
TVaANSIEmulation is able to handle.

Properties in addition to standard TControl properties

Blinktime Time in milliseconds for blinking characters to turn on and off.

BufferBackground BufferBackground[X, Y: Integer]: TColor
Returns the background color at X,Y position in the receive buffer

BufferChar BufferChar[X, Y: Integer]: AnsiChar
Returns the character at X,Y position in the receive buffer

BufferColor BufferColor[X, Y: Integer]: TColor
Returns the text color at X,Y position in the receive buffer

Capture When true, the incoming data stream from the connected TVaComm is
retrieved and stored in a file specified by CaptureFile.

CaptureAppend When true, the data is appened to the CaptureFile if it already contained
data, otherwise, a new CaptureFile is created.

CaptureFile Sets the file to use to store all incoming data.

CaretX Returns the cursor X position

CaretY Returns the cursor Y position

Character Character[X, Y: Integer]: AnsiChar
Returns the character at X,Y position in the terminal

CharacterBackground CharacterBackground[X, Y: Integer]: TColor
Returns the background color at X,Y position in the terminal

CharacterColor CharacterColor[X, Y: Integer]: TColor
Returns the text color at X,Y position in the terminal

Color Sets the default background color of the terminal.

Columns Sets the maximum number of characters that can be horizontally displayed
in the terminal.

Comm Sets the instance of TVaComm through which the TVaTerminal will
communicate.

CursorType Selects the type of cursor. Cursor type can be crsBlock, crsUnderline or
crsNone.

Emulation Sets the non-visual emulation component that can be used with
TVaTerminal. With TMS Async, TVaTTYEmulation and TVaANSIEmulation are
included.

LocalEcho When true, the characters typed are also displayed in the terminal,
otherwise, charaters typed are only sent via TVaComm.

LocalEchoColor Sets the color of the characters typed in TVaTerminal.

Rows Sets the maximum number of rows that can be vertically displayed in the
terminal.

ScrollBack When true, scrolling back in the terminal is enabled.

ScrollBackRows Sets the maximum number of rows that can be scrolled back.

WantAllKeys When true, special characters like TAB,CR, ESC are also sent.

Events in addition to standard TControl properties

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

32

OnDataReceived Event triggered when the TVaTerminal client has received data from
TVaComm

Methods

AddText procedure AddText(const Text: string);

Adds text at cursor position to the terminal and sends it via TVaComm

AddControlText procedure AddControlText(const Text: string; const Color, Bkg: TColor);
Adds text at cursor position to the terminal with specified text and
background color and sends it via TVaComm

Clear Clears the terminal

ClearAll Clears the terminal + its internal buffers

ClearAllBuffer Clears the terminal + its internal buffers without repainting

ClearScreenBuffer Clears the terminal without repainting

GotoXY Moves the caret to X,Y on the terminal

InsertAndScrollF procedure InsertAndScrollF(nrLines: Integer);
Inserts void lines and moves screen pointer down. Updates the display.

Scroll function Scroll(nrLines: Integer): Integer;
Moves back screen pointer; returns the number of lines actually scrolled
(depends on the nr. of scrollback rows). Returns the number of rows
effectively scrolled back.

WriteBuf function WriteBuf(var Buf; Count: Integer): Integer;
Sends the data to the connected TVaComm

WriteChar function WriteChar(Ch: AnsiChar): Boolean;
Sends the character to the connected TVaComm

WriteText function WriteText(const s: AnsiString): Boolean;
Sends the text to the connected TVaComm

TMS SOFTWARE

TMS Async
DEVELOPERS GUIDE

33

TVaConfigDialog

A TVaConfigDialog facilitates adding a dialog for end-users to configure serial port settings without
needing to write any code.To use the component, drop TVaConfigDialog on the form, assign a
TVaComm instance to VaConfigDialog.Comm and show the configuration dialog via
VaConfigDialog.Execute.

TVaConfigDialog will display the COM port settings as defined in the connected TVaComm
component and after changing the settings via the dialog and closing the dialog with OK, the
updated settings will be applied to TVaComm.

